If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+84t+112
We move all terms to the left:
0-(-16t^2+84t+112)=0
We add all the numbers together, and all the variables
-(-16t^2+84t+112)=0
We get rid of parentheses
16t^2-84t-112=0
a = 16; b = -84; c = -112;
Δ = b2-4ac
Δ = -842-4·16·(-112)
Δ = 14224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14224}=\sqrt{16*889}=\sqrt{16}*\sqrt{889}=4\sqrt{889}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-4\sqrt{889}}{2*16}=\frac{84-4\sqrt{889}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+4\sqrt{889}}{2*16}=\frac{84+4\sqrt{889}}{32} $
| . 2x+14=5 | | |6x+1|-8=-2 | | -8.5x+0.39=-6.41 | | (3x+12)=(6x−10)+(x+12) | | 8x+4=3×+7 | | 9x=8x+56 | | 5x=9x+23 | | 5x=9x+22 | | 5x=9x+81 | | 6v-4/3=-1/5v-6/5 | | 5x=9x+45 | | 5x=9x+903 | | 40=4v+12 | | 3x+17+7x+3+50=180 | | 5·(4x-9)=115 | | 13/2u=13 | | ×=37-3y | | v+32=3v | | -4(6x-5)+9x=3(x+8) | | 40=4v12 | | 4h2+7h–11=0 | | 7x=70-3(9) | | 7x=51-3(9) | | 7x=52-3(9) | | 4(x-6)=-5x+21 | | 70+6x=19x+5 | | 7x=50-3(9) | | –6j=66 | | 1/8(8y−1)=2y−1/4 | | 36=4(x+8)-8x | | x=(0.5*(650+x))/5 | | t+2=36 |